2024 年度新疆维吾尔自治区科学技术奖 提名公示内容

一、成果名称

胶结多元介质力学特性数值仿真理论方法与工程应用

二、提名者

新疆农业大学

三、代表性论文(专著)目录

序	论文名称	期刊名称	年	全部作者
号			卷	
			(期)	
1	颗粒流(PFC5.0)数值模拟技术	中国建筑工业	2018	石崇,张强,王盛
1	及应用	出版社	2018	年
	Calibration of micro-scaled			CI CI:
	mechanical parameters of	Granular Matter		Chong Shi ,
2			2019,	Wenkun Yang,
2	granite based on a		21(2)	Junxiong Yang,
	bonded-particle model with 2D			Xiao Chen
	particle flow code			Alao Chen
				Wang, Shengnian;
	F	Construction and building materials	2021,	Xue, Qinpei;
	Experimental study on material			Zhu, Yin ;
3	ratio and strength performance		267	Li, Guoyu;
	of geopolymer-improved soil			Wu, Zhijian;
				Zhao, Kai
	Study of deformation and fallery	International		Zhang, Yulong;
4	Study of deformation and failure in an anisotropic rock with a three-dimensional discrete	Journal of Rock	2019,	Shao, Jianfu;
		Mechanics and		de Saxcé, Géry ;
		Mining	120	Shi, Chong;
	element model	Sciences		Liu, Zaobao

5	Effects of confining pressure and loading path on deformation and strength of cohesive granular materials: a three-dimensional DEM analysis	Acta Geotechnica	2019, 14(2)	zhang, Yulong; Shao, Jianfu; Liu, Zaobao; Shi, Chong; De Saxcé, Géry	
6	Influence of volumetric block proportion on mechanical properties of virtual soil-rock mixtures	Engineering GeologyE	2020	Wang, Shengnian; Li, Yue; Gao, Xinqun; Xue, Qinpei; Zhang, Peng; Wu, Zhijian	
7	Run-out prediction and failure mechanism analysis of the Zhenggang deposit in southwestern China	Landslides	2017, 14(2)	Wang, S. N.; Xu, W. Y.; Shi, C.; Chen, H. J.	
8	土石混合体三维细观结构随机 重构及其力学特性颗粒流数值 模拟研究	岩土工程学报	2019, 41(1)	张强, 汪小刚, 赵 宇飞, 刘立鹏, 林 兴超	

四、主要完成人情况

姓名	排名	职称/ 职务	工作单位	对本项目技术创造性贡献
石崇	1	教授/ 副院长	河海大学/ 新疆农业 大学	项目总负责人,负责项目总体方案设计和全面组织实施。主要在细观特征精确刻画理论,改进离散元数值模拟关键技术,提出了一系列符合外荷载特点的细观本构模型,以及利用多尺度、跨尺度数值方法来解决工程问题。对科学发现点 1、2、3、4 均做出重要贡献。
王	2	副教授	南京工业	项目核心骨干人员,提出了不同胶结类型多元

盛			大学	混合介质细观接触本构模型,发展了连续非连
年				续滑坡数值仿真技术。对科学发现3和4做出
				了重要贡献。
		古団ル利	项目核心骨干人员,改进了复杂离散颗粒模型	
张	,		中国水利 水电科学	伺服控制、细观匹配建模与参数标定方法理论,
强		止 向		建立了连续-非连续耦合多尺度数值仿真方法。
			研究院	对于科学发现点 1、2、4 做出了重要贡献。
张	리스	司山地小河	新疆农业	项目核心骨干人员,推动了颗粒流数值理论于
	4			技术与新疆特殊物理环境的结合,改进了多场
	凌 4 副教授	大学	耦合、多尺度数值仿真技术。对科学发现4作	
引			出了重要贡献。	
			项目核心骨干人员,建立了不同胶结类型多元	
张		5 副教授	河海大学	混合介质细观接触本构模型,建立了细观尺度
玉	玉 5			的渗流计算方法,提出了渗流工程灾变机理与
龙				稳定仿真方法。对科学发现 1、3、4 作出了重
			要贡献	

五、主要完成单位

完成单位	排名	对本项目技术创新性贡献
		项目主持单位。负责项目总体计划的制定以及组
		织协调实施。在推动颗粒流数值理论于技术与新
新疆农业大学	1	疆特殊物理环境的结合,改进多场耦合、多尺度
		数值仿真技术做出了创新性贡献。主持该项目在
		新疆自治区的研究和推广应用。
		项目完成单位。在细观特征精确刻画理论,改进
		离散元数值模拟关键技术,提出了一系列符合外
河海大学	2	荷载特点的细观本构模型,以及利用多尺度、跨
		尺度数值方法来解决工程问,地震于渗流工程灾
		变机理与稳定仿真方法。

	3	项目完成单位。提出了不同胶结类型多元混合介
南京工业大学		质细观接触本构模型,发展了地震、降雨影响下
		连续非连续滑坡数值仿真技术
中国水利水电科学研究院	4	项目完成单位。改进了复杂离散颗粒模型伺服控
		制、细观匹配建模与参数标定方法理论,改进了
		连续-非连续耦合多尺度数值仿真方法。