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a b s t r a c t

Bayesian and discriminant function analysis (DFA) models have recently been used as tools to estimate
sediment source contributions. Unlike existing multivariate mixing models, the accuracy of these two
models remains unclear. In the current study, four well-distinguished source samples were used to create
artificial mixtures to test the performance of Bayesian and DFA models. These models were tested against
the Walling-Collins model, a credible model used in estimation of sediment source contributions esti-
mation, as a reference. The artificial mixtures were divided into five groups, with each group consisting
of five samples with known source percentages. The relative contributions of the sediment sources to the
individual and grouped samples were calculated using each of the models. The mean absolute error
(MAE) and standard error of (SE) MAE were used to test the accuracy of each model and the robustness of
the optimized solutions. For the individual sediment samples, the calculated source contributions ob-
tained with the Bayesian (MAE ¼ 7.4%, SE ¼ 0.6%) and Walling-Collins (MAE ¼ 7.5%, SE ¼ 0.7%) models
produced results which were closest to the actual percentages of the source contributions to the sedi-
ment mixtures. The DFA model produced the worst estimates (MAE ¼ 18.4%, SE ¼ 1.4%). For the grouped
sediment samples, the Walling-Collins model (MAE ¼ 5.4%) was the best predictor, closely followed by
the Bayesian model (MAE ¼ 5.9%). The results obtained with the DFA model were similar to the values for
the individual sediment samples, with the accuracy of the source contribution value being the poorest
obtained with any of the models (MAE ¼ 18.5%). An increase in sample size improved the accuracies of
the Walling-Collins and Bayesian models, but the DFA model produced similarly inaccurate results for
both the individual and grouped sediment samples. Generally, the accuracy of the Walling-Collins and
Bayesian models was similar (p > 0.01), while there were significant differences (p < 0.01) between the
DFA model and the other models. This study demonstrated that the Bayesian model could provide a
credible estimation of sediment source contributions and has great practical potential, while the accu-
racy of the DFA model still requires considerable improvement.
© 2019 International Research and Training Centre on Erosion and Sedimentation/the World Association

for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.

1. Introduction

Patterns formed by sediment dynamics in catchments and river
systems provide important information on nutrient and contami-
nant redistribution, such as organic pollutants, which can lead to
eutrophication, and heavy metals (e.g., Pimentel et al., 1995; Smith
et al., 2011). Information on the contribution of sediment sources is
useful for comprehensive catchment management. Sediment

fingerprinting provides an effective and convenient way to quantify
sediment source information. Since the sediment source finger-
printing technique was first used in the 1970s, it has greatly
advanced and become more widely used (Walling, 2013). To date,
considerable progress has been made to improve sediment
fingerprinting techniques and reduce the uncertainty that results
from: the preselection of potential material sources (Collins et al.,
2010; Liu et al., 2011; Minella et al., 2008; Rabesiranana et al.,
2016; Walling et al., 1993), sampling strategies (Davis & Fox,
2009; Du & Walling, 2017; Gellis & Noe, 2013; Haddadchi et al.,
2015; Wilkinson et al., 2013, 2015), and tracer selection (Blake et* Corresponding author.
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al., 2012; Kimoto et al., 2006; McKinley et al., 2013; Sherriff et al.,
2015; Zhang et al., 2001).

Estimation models have also received great attention, as they
have allowed the contributions of different sediment sources to be
determined by comparing sediment properties. However, clarifi-
cation of the uncertainty and accuracy of these models is needed.
The widely used Walling-Collins model developed by Walling et al.
(1993) and Collins et al. (1997) has undergone continuous
improvement, such as adding correction factors or weights to the
model (Collins et al., 2010). However, addition of correction factors
and weights has resulted in overcorrection in some situations,
which may bias the estimated contribution results (Martinez-
Carreras et al., 2008; Zhang & Liu, 2016). Since the introduction
of the Walling-Collins model, several types of multivariate mixing
models also have been proposed. Examples of these models
include: the Hughes model, which aims at attaining the lowest
error for individual samples but not the mean value when taking a

Monte Carlo approach (Hughes et al., 2009; Olley & Caitcheon,
2000); the Motha model, which illustrates uncertainties caused
by variations in source and sediment tracer properties by mini-
mizing the objective function and including an additional tolerance
criterion for the goodness-of-fit (Motha et al., 2003); the Landwehr
model, which applies a normalized standard deviation from mul-
tiple sources, which makes the statistics used in the model more
powerful (Devereux et al., 2010); and the distributionmodel, which
uses the Pearson correlation and incorporates Student's t-distri-
bution for fingerprint properties and normal distribution for sedi-
ment into the modeling framework (Laceby & Olley, 2015).

For the foregoing multivariate mixing models and their modi-
fied versions, the principles of sediment source estimation are
basically similar. They generate random values for the fingerprint
properties using Latin Hypercube sampling strategies and obtain
globally optimal solutions through the application of genetic al-
gorithm optimization. However, the different models usually

Fig. 1. Photographs of the four potential sediment source areas used in this study: (a) Cultivated land, (b) Forest, (c) Grassland, and (d) Gully banks.
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generate different results and their assessment is important.
Haddadchi et al. (2014) evaluated the representative multivariate
mixingmodels. They showed that the predictor proposed by Laceby
and Olley (2015) provided the most accurate estimates and the
Walling-Collins model without weighting terms gave similar esti-
mates. The modified model proposed by Collins Webb et al. (2010)
with tracer discriminatory and within-source variability weights
yielded the worst performance.

Other types of models that have been used to estimate sediment
source contributions include Bayesian and discriminant function
analysis (DFA) models. The Bayesian model incorporates uncer-
tainty into the mixing models and makes full use of existing in-
formation (D'Haen et al., 2013; Moore & Semmens, 2008). Bayesian
model was introduced quite early (Small & Rowan, 2002), but did
not gain popularity until recently (D'Haen et al., 2013; Nosrati,
2017; Nosrati et al., 2014). DFA model can be used to quantify
sediment source contributions while avoiding the use of mixing
models altogether (Liu et al., 2016). The principles of operation of
these two types of models are totally different from the multivar-
iate mixing models.

There have been no assessments of Bayesian and DFA model
performance in sediment source contribution studies. To test
whether these models can be applied to the accurate estimation
of sediment source contributions, artificial mixtures of four
well-distinguished sources were prepared. As the Walling-
Collins model without correction factors has proven effective
(Haddadchi et al., 2014) and has been most widely used
(Martinez-Carreras et al., 2008; Owens et al., 1999; Zhang & Liu,
2016), it was also applied in this assessment, as representative of
multivariate mixing models. The results of the current research
can provide an objective theoretical basis and avoid blind
selection when estimating of potential sediment source
contributions.

2. Material and methods

2.1. Artificial mixtures

Samples were collected from a small sub-basin of the Hebei
catchment (49�0102000N, 125�1804600E), in the black soil region of
Heilongjiang Province, northeast China. Cultivated land, forests,
grassland, and gully banks were identified as being the main
sediment source areas in this catchment (Fig. 1). Five samples were
collected from each source area, giving a total of 20 samples. Topsoil
samples from the cultivated land, forest, and grassland source areas
were collected from a depth of 0e5 cm using a steel ring (7.5 cm
diameter and 5.0 cm high). To increase the representativeness of
the individual samples, three subsamples were collected within a
radius of about 2 m at each site. The gully samples were composite
samples collected from the full vertical profile of the gully side with
particular focus on the B and C horizons (illuvial horizon and parent
material horizon). To limit particle size effects, samples were
passed through a 63-mm sieve. Five different artificial mixture
groups were created based on the weight of randomly selected
samples collected from each source, with each group consisting of
five artificial samples (Fig. 2).

Group 1 Identical amounts (9 g) of randomly selected samples
from each source type were mixed to make five artificial
sediment samples (M1eM5). Each of the source types
each made a 25% contribution to the artificial samples.

Group 2 Identical amounts (9 g) of randomly selected samples
from the forest, grassland, and gully bank areas were
mixed with 3 g of the sample from cultivated land tomake
five artificial sediment samples (M6eM10). The cultivated
land area sample contributed 10% of the artificial samples,
and the other source area samples each contributed 30%.

Fig. 2. Flow chart outlining the process used to test model accuracy given source proportion of artificially made sediments.
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Group 3 Identical amounts (9 g) of randomly selected samples
from cultivated land, grassland, and gully bank areas were
mixed with 3 g of the sample from the forest area to make
five artificial sediment samples (M11eM15). The forest
area sample contributed 10% of the five artificial samples,
and the other source area samples each contributed 30%.

Group 4 Identical amounts (9 g) of randomly selected samples
from the cultivated land, forest, and gully bank areas were
mixed with 3 g of the sample from the grassland area to
make five artificial sediment samples (M16eM20). The
grassland area sample contributed 10% of the artificial
samples, and the other source area samples each
contributed 30%.

Group 5 Identical amounts (9 g) of randomly selected samples
from the cultivated land, forest, and grassland areas were
mixed with 3 g of the sample from the gully bank area to
make five artificial sediment samples (M21eM25). The
gully bank sample contributed 10% of the artificial sam-
ples and the other source area samples each contributed
30%.

2.2. Tracer properties analysis

Inorganic nutrient, trace metal, heavy metal, and rare earth
element content in the source and artificial sediment samples were
analyzed by X-ray fluorescence spectrometry. In total, 29 chemical
elements were identified, namely, phosphorus (P), titanium (Ti),
vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel
(Ni), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), bromine (Br),
rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium
(Nb), barium (Ba), lanthanum (La), cerium (Ce), neodymium (Nd),
lead (Pb), silicon dioxide (SiO2), aluminum oxide (Al2O3), iron oxide
(Fe2O3), magnesium oxide (MgO), calcium oxide (CaO), potassium
oxide (K2O), and sodium oxide (Na2O).

2.3. Sediment fingerprinting models

Based on the evaluation of Haddadchi et al. (2014), the Walling-
Collins model without weighting terms offers a high level of ac-
curacy. In view of its common use, this model was selected for
comparison with the Bayesian and DFA models. All three models
were coded in Matlab.

2.3.1. Walling-Collins model
The algorithm used by Walling et al. (1993) and Collins et al.

(1997) was used for this evaluation. To minimize the error term,
the algorithm was expressed as follows:
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Xm
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where m is the number of potential sediment sources, Ci is the
concentration of the ith fingerprint property in the sediment
sample, n is the number of fingerprint properties, Ps is the per-
centage contribution of sediment source s, and Ssi is the concen-
tration of fingerprint property i in sediment source sample s. The
mean and standard deviation of the fingerprint properties were

used to do random repeat sampling 2500 times with the Latin
Hypercube sampling method (LHs) and genetic algorithm (GA)
optimization (Collins et al., 2012).

2.3.2. Bayesian model
The Bayesian model was originally used in predatoreprey case

studies to assess the contributions of different sources (Preys) to a
mixture (Consumer) in ecology (Moore & Semmens, 2008). The
model was used to quantify uncertainty by calculating the proba-
bility distributions for the proportional contribution fi of each
source i to the mixture of the four sources. According to the Bayes
rule, the post probability of each fq is calculated based on the data
and prior information, as follows:
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fqÞ is the likelihood of the data, given that fq, p(fq)

represents the prior probability of the given state being true based
on prior information, and fq is the proportional source contribution
of q proposed vectors.

The likelihood of this distribution is then determined by calcu-
lating the product of the likelihood of each individual mixture
tracer value, given the proposed mixture distribution specific to
that tracer. The proposed tracer distributions for the mixture are
determined by solving for the proposed means bmj and standard
deviations bsj of the mixture based on the randomly drawn fi values
constituting the vector fq. Once the values of bmj and bsj are deter-
mined, the likelihood of the data given the proposed mixture is
calculated as:
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where xkj is the jth tracer property of the kth sediment sample. The
sampling-importance-resampling algorithm (Rubin, 1988) was
used to generate samples from the posterior distribution of the
estimated mixture.

Fig. 3. Scatterplot of first and second discriminant functions calculated using stepwise
DFA associated selection of the optimum composite fingerprint.
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2.3.3. Discriminant function analysis (DFA) model
DFA is a standard procedure for optimized composite fingerprint

selection. Liu et al. (2016) recognized that the DFA output could be
used to directly quantify the source contribution without any extra
procedures in the mixing models, as follows:

Dm ¼
Xf

i¼1

ri
100

jFiðsourcemÞ � FiðsedimentÞj (6)

Wm ¼ 1=Dm (7)

W ¼
Xm

i¼1

1=Dm (8)

Pm ¼ðWm=WÞ � 100 (9)

where Dm is the distance from source m, ri is the rate (%) of Fi to
classify sources, Fi is the discriminant function obtained from the
DFA output, f is the number of discriminant functions, Wm is the
weighting for source m, W is the total weighting, Pm is the contri-
bution of source m (%), Fi(sourcem) and Fi(sediment) are the centers
of the sourcem and sediment based on the function i, respectively.
A scatter plot of the first and second discriminant functions
determined from stepwise DFA of the four potential sediment
sources and artificial sediment samples is shown in Fig. 3.

2.4. Accuracy of models

The mean absolute error (MAE) was used to test the accuracy of
each model as follows:

MAE ¼
Pm

j¼1


APj � CPj





m
(10)

where APj is the actual percentage of source j in the artificial mix-
tures, CPj is the calculated percentage of source j, and m is the
number of sources.

3. Results

3.1. Characteristics of the fingerprinting tracers

The 25 studied sediment samples were created artificially and
underwent no mobilization or transport. Therefore, the tracer
concentrations of each sample were bounded by a quadrangle
formed by the average concentrations of the four source samples.
All tracers broadly passed the bracket test. The Kruskal-Wallis hy-
pothesis test (H-test), a nonparametric procedure, was used to
select tracers that exhibited significant differences between the
potential sediment sources (Liu et al., 2016). The H-test revealed
that the P, Ti, V, Cr, Mn, Cu, Ga, Br, Y, Zr, Nb, Ba, Nd, SiO2, Al2O3, CaO,
K2O, and Na2O contents were significantly different for the four
potential sources at the p < 0.05 (Table 1).

DFA has conventionally been used to identify important di-
mensions and minimize the number of tracers to those that best
allow discrimination between sources. The 18 tracers that passed
the H-test were analyzed by DFA, and the tracers Al2O3, Br, Ba, P,
and SiO2 passed the DFA procedure as the optimum composite
fingerprint. This tracer selection correctly classified 95.0% of the
original grouped samples (Table 2). Fig. 3 shows a scatterplot of the
first and second discriminant functions which separates the culti-
vated land, forest, grassland, and gully bank areas based on the final

composite fingerprint. The mean, standard variation, and correla-
tion coefficients for optimum composite fingerprints for the four
sediment sources are listed in Tables 3 and 4.

Concentration data and probability distributions of the opti-
mum composite fingerprint used to discriminate between culti-
vated land, forest, grassland, and gully bank areas are shown in
Fig. 4. Based on the scatterplot in Fig. 3, the cultivated land samples
are relatively discrete and best correspond to that of grassland. The
centroid distance between the cultivated land and grassland areas
is the shortest, which leads to a large overlap area in the probability
distributions of these two sources (Fig. 4). This is because the
grassland area is located at the foot of sloping land and is greatly
affected by sediment eroded from cultivated land on the slope.
However, grassland and cultivated land still were significantly
different and separated as different sediment sources. In contrast,
data from the gully bank samples were clearly distinguished from
those taken from the other sources (Fig. 3). The probability distri-
butions of the fingerprinting tracers from the gully bank samples in
Fig. 4 clearly are separate from cultivated land, forest, and grassland
distributions, with the exception of Ba.

Table 1
Output resulting from application of the KruskaleWallis H-test to the source-type
fingerprint property data that passed dual-range bracket testing for the studied
catchment.

Fingerprinting tracers H-value p-value

1 P 14.943 0.002
2 Ti 12.243 0.007
3 V 12.884 0.005
4 Cr 10.391 0.016
5 Mn 9.933 0.019
6 Co 3.231 0.357*

7 Ni 4.310 0.230*

8 Cu 8.881 0.031
9 Zn 5.049 0.168*

10 Ga 11.216 0.011
11 Br 11.824 0.008
12 As 7.345 0.062*

13 Rb 7.383 0.061*

14 Sr 7.051 0.070*

15 Y 11.280 0.010
16 Zr 8.057 0.045
17 Nb 9.353 0.025
18 Ba 10.528 0.015
19 La 1.907 0.592*

20 Ce 3.397 0.334*

21 Nd 10.300 0.016
22 Pb 6.889 0.076*

23 SiO2 13.223 0.004
24 Al2O3 16.429 0.001
25 Fe2O3 5.565 0.135*

26 CaO 10.622 0.014
27 MgO 4.104 0.250*

28 K2O 9.609 0.022
29 Na2O 8.206 0.042

*Not significantly different at p < 0.05 level.

Table 2
Optimum composite fingerprints for discrimination of sediment source types in the
studied catchment.

Step Variable Correctly classified
cumulative source type
sample (%)

Correctly classified
source-type
sample (%)

p-level

1 Al2O3 80.0 80.0 <0.05
2 Br 83.5 55.5 <0.05
3 Ba 90.0 60.0 <0.05
4 P 92.8 55.0 <0.05
5 SiO2 95.0 65.0 <0.05
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Table 3
Mean, coefficient of variance (CV), and standard deviation (SD) of tracers that passed DFA for the studied land use types.

Land use types Sediment fingerprinting tracers Sample size

P Br Ba SiO2 Al2O3

mg/g mg/g mg/g % %

Cultivated land Mean 964.3 5.32 640.42 58.46 14.07 5
SD 143.07 0.79 9.45 0.89 0.29
CV 0.148 0.148 0.015 0.015 0.021

Forest Mean 1,116.88 5.66 674.38 51.7 13.04 5
SD 84.79 1.92 19.87 2.74 0.44
CV 0.076 0.339 0.029 0.053 0.034

Grassland Mean 1,271.12 6.02 624.28 54.06 13.94 5
SD 188.75 0.78 22.13 2.6 0.56
CV 0.148 0.130 0.035 0.048 0.040

Gully bank Mean 623.54 1.1 624.2 61.71 15.61 5
SD 160.03 0.43 20.33 3.65 0.44
CV 0.257 0.391 0.033 0.059 0.028

Table 4
Correlation coefficients for selected tracers for the four sediment sources.

Tracers P Br Ba SiO2 Al2O3 P Br Ba SiO2 Al2O3

Cultivated land Forest
P 1 1
Br 0.153 1 0.619 1
Ba 0.043 �0.502 1 �0.770 �0.874 1
SiO2 �0.450 0.226 0.080 1 �0.633 �0.849 0.769 1
Al2O3 �0.556 0.153 �0.391 �0.347 1 �0.105 0.203 0.146 0.206 1
Grassland Gully bank
P 1 1
Br 0.998b 1 �0.738 1
Ba 0.935a 0.918a 1 0.842 �0.805 1
SiO2 0.458 0.488 0.545 1 0.839 �0.883a 0.962b 1
Al2O3 0.807 0.801 0.931a 0.796 1 �0.743 0.741 �0.533 �0.520 1

a Correlation is significant at the 0.05 level.
b Correlation is significant at the 0.01 level.

Fig. 4. Concentration plots of source samples and the probability distributions of P, Ba, Br, SiO2, and Al2O3 for the four sediment source areas.
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3.2. Individual sediment samples

The contributions of each source in the twenty-five individual
sediment samples (M1e M25) were calculated using the Walling-
Collins, Bayesian, and DFA models. Fig. 5a shows the results ob-
tained from each model for the Group 1 sediment samples
(M1eM5: equal contribution from sources). Comparisons of these
results, with the percentages for actual sediment samples

(dashed line) were based on mean absolute error (MAE) and
average MAE (MAE). The Walling-Collins model (MAE ¼ 5.7%, SD.
MAE ¼ 3.2%) was the best model, followed by the Bayesian
model (MAE ¼ 6.3%, SD. MAE ¼ 1.2%), and the DFA model
(MAE ¼ 21.8%, SD. MAE ¼ 0.4%) exhibited the worst performance
(Table 5).

The results for individual sediment samples from Group 2
(M6eM10; Fig. 5b: cultivated land ¼ 10%, forest ¼ 30%,

Fig. 5. Results of the Walling-Collins, Bayesian, and DFA sediment fingerprinting models of the individual sediment samples. AP is the actual percentage of each type of sediment in
the mixed sediment.
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grassland ¼ 30%, gully bank ¼ 30%) indicated that the Walling-
Collins model (MAE ¼ 9.2%, SD. MAE ¼ 2.6%) performed the best.
This was followed by the Bayesian model (MAE ¼ 10.8%, SD.
MAE ¼ 1.6%) and the DFA model (MAE ¼ 23.7%, SD. MAE ¼ 2.6%).

For the Group 3 samples (M11eM15; Fig. 5c: cultivated
land ¼ 30%, forest ¼ 10%, grassland ¼ 30%, gully bank ¼ 30%) the
Bayesian model produced results with the highest accuracy
(MAE ¼ 6.8%, SD. MAE ¼ 2.7%). This was followed by the Walling-
Collins model (MAE ¼ 10.0%, SD. MAE ¼ 2.7%), while the
DFA model (MAE ¼ 10.3%, SD. MAE ¼ 4.1%) produced the poorest
results.

Fig. 5d shows the results obtained for the Group 4 samples
(M16eM20: cultivated land ¼ 30%, forest ¼ 30%, grassland ¼ 10%,
gully bank ¼ 30%). Results obtained from the Bayesian model
(MAE ¼ 8.5%, SD. MAE ¼ 4.7%) were closest to the actual sediment
percentage from each source. This was followed by the Walling-
Collins model (MAE ¼ 9.2%, SD. MAE ¼ 3.1%), while the results
from the DFA model (MAE ¼ 24.7%, SD. MAE ¼ 4.3%) exhibited the
worst performance.

Fig. 5e shows the results obtained for the Group 5 sample
(M21eM25: cultivated land ¼ 30%, forest ¼ 30%, grassland ¼ 30%,
and gully bank ¼ 10%). TheWalling-Collins model (MAE¼ 3.4%, SD.
MAE ¼ 1.9%) produced the best prediction, followed by the
Bayesian model (MAE ¼ 4.8%, SD. MAE ¼ 2.0%) and the DFA model
(MAE ¼ 11.4%, SD. MAE ¼ 4.5%).

3.3. Groups of sediment samples

For Group 1, with equal contribution from each source the
Walling-Collins model (MAE ¼ 3.9%) performed best with an esti-
mated 32.7% contribution from cultivated land, 23.5% from forest,
21.5% from grassland, and 22.4% from gully bank. The accuracy of
the results produced by the Bayesian model (MAE ¼ 9.4%) was
much lower with an estimated 43.8% contribution from cultivated
land, 22.3% from forest, 17.0% from grassland, and 11.6% from gully
bank sources. The DFA model (MAE ¼ 21.4%) exhibited the poorest
performance with an estimated 49.8% contribution from cultivated
land, 3.8% from forest, 43.1% from grassland, and 3.3% from gully
bank sources (Fig. 6a; Table 6).

Fig. 6b shows the results obtained for Group 2 (cultivated
land¼ 10%, forest¼ 30%, grassland¼ 30%, gully bank¼ 30%). These
indicate that the Walling-Collins model (MAE ¼ 9.1%) performed
best with contributions of 28.2, 24.2, 21.2, and 26.5% from culti-
vated land, forest, grassland, and gully bank sources, respectively.
The Bayesian model (MAE ¼ 10.2%) exhibited a similar level of
accuracy to that of the Walling-Collins model with 30.5, 22.0, 22.1,
and 25.4% contributions from cultivated land, forest, grassland, and
gully bank sources, respectively. The DFA model produced the

poorest results with a MAE of 24.9% (cultivated land ¼ 30.7%,
forest ¼ 5.1%, grassland ¼ 59.0%, gully bank ¼ 5.2%).

For Group 3 (30% cultivated land, 10% forest, 30% grassland, and
30% gully bank), the Bayesian model proved to be themost accurate
model with a MAE of 6.9%, and 43.0, 10.9, 20.6, and 25.6% contri-
butions from cultivated land, forest, grassland, and gully bank
sources, respectively. The Walling-Collins model was the next most
accurate model with a MAE of 7.1% (cultivated land ¼ 32.8%,
forest ¼ 21.4%, grassland ¼ 18.7%, gully bank ¼ 27.2%). The DFA
model (MAE¼ 10.2%) was themost inaccuratemodel with 34.0, 8.5,
46.3, and 11.2% contributions from the cultivated land, forest,
grassland, and gully bank, respectively (Fig. 6c).

For Group 4 (cultivated land ¼ 30%, forest ¼ 30%,
grassland ¼ 10%, gully bank 30%) the Bayesian model was the best
predictor model with a MAE of 2.4% (cultivated land ¼ 25.1%,
forest¼ 30.8%, grassland¼ 13.5%, gully bank¼ 30.6%). TheWalling-
Collins model was the second-most accurate model with a MAE of
5.5% (cultivated land ¼ 30.0%, forest ¼ 19.1%, grassland ¼ 21.0%,
gully bank ¼ 29.9%) while the DFA model (MAE ¼ 26.5%) was the
poorest model with 38.1, 3.7, 54.8, and 3.4% contributions from
cultivated land, forest, grassland and gully bank, respectively
(Fig. 6d).

For Group 5 (Fig. 6e; cultivated land ¼ 30%, forest ¼ 30%,
grassland ¼ 30%, gully bank ¼ 10%) the Bayesian model
(MAE ¼ 0.4%) performed best (cultivated land ¼ 30.2%,
forest ¼ 30.0%, grassland ¼ 30.5%, gully bank ¼ 9.3%). This was
followed by the Walling-Collins model with a MAE of 1.7%. The DFA
model (MAE ¼ 11.1%) exhibited the poorest level of performance
with 51.5, 11.2, 30.7, and 6.5% contributions from the cultivated
land, forest, grassland, and gully bank, respectively.

4. Discussion

The principle onwhich the Bayesian model is based differs from
that of the Walling-Collins model. The Bayesian model is based on
probability theory. It makes full use of existing information and
provides a priori estimates and uncertainties for the parameters
according to the mean and variance ( bmj ; bsj) of the prior distribution
(p(fq)), and then uses the observed data for different time points to
estimate parameters. When a set of data is obtained, the posterior
distribution obtained from the first set of data is taken as the a
priori distribution. New data then are added to obtain the posterior
distribution for the next step and the parameters are updated and
estimated. In addition, the sampling-importance-resampling pro-
cess extracts the samples from the important sampling function
and does weighted sampling of the samples to make the samples
approximate the objective function. Unlike the Bayesian model, the
Walling-Collins model is an optimization calculation process. It is
combined with the Latin hypercube sampling process to ensure
estimation uniformity of the samples in space under the assump-
tion that the fingerprint factor concentration in each sediment
source exhibits a normal distribution. Global optimal solutions are
calculated using a genetic algorithm.

To compare the uncertainty and accuracy associated with sedi-
ment fingerprinting, Figs. 7 and 8 show the frequency and posterior
probability distributions of the proportional contributions esti-
mated using the Walling-Collins and Bayesian models, respectively
(the DFA model has no Monte Carlo sampling simulation or opti-
mization calculation procedure). For theWalling-Collins model, the
cultivated land source had the largest distribution range with an
average standard deviation (ASD) of 24.0%. Because the forest and
grassland are located at the backslope and toeslope of the culti-
vated land, respectively, soil eroded from the cultivated land tended
to be deposited in the forest and grassland areas. This led tomost of
the tracer concentrations of these two sources being similar to that

Table 5
Average mean absolute error (MAE) and standard variation of MAE (SD. MAE) of the
five artificial sediment samples in each group.

Artificial mixture
sediments

Walling-
Collins
model

Bayesian
model

DFA
model

M1-M5 MAE (%) 5.7 6.3 21.8

SD. MAE (%) 3.2 1.2 0.4
M6-M10 MAE (%) 9.2 10.8 23.7

SD. MAE (%) 2.6 1.6 2.6
M11-

M15
MAE (%) 10.0 6.8 10.3

SD. MAE (%) 2.7 2.7 4.1
M16-

M20
MAE (%) 9.2 8.5 24.7

SD. MAE (%) 3.1 4.7 4.3
M21-

M25
MAE (%) 3.4 4.8 11.4

SD. MAE (%) 1.9 2.0 4.5
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of cultivated land (Table 3, Fig. 4). It is important to recognize that
the actual amounts of sediment contributed by the different sour-
ces are distinct from their relative contributions. The relative con-
tributions of sediment sources with similar tracer concentrations

interact, resulting in larger estimation ranges for forest
(ASD ¼ 16.0%) and grassland (ASD ¼ 14.8%) sources, even though
they are easy to distinguish from each other (Fig. 3). Unlike the
forest and grassland samples, the gully bank samples represent the

Fig. 6. Source contributions estimated by the Walling-Collins, Bayesian, and DFA models for the five categories of grouped sediment samples. AP is the actual percentage of each
sediment source in the mixed sediment and CP is the calculated percentage of each source in the mixture.
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subsoil and are unaffected by other sources. The probability dis-
tributions of fingerprinting tracers from the gully bank areas were
typically located in rightmost or leftmost positions on the charts

and exhibited minimal overlap with the other sources (Fig. 4). This
results in the gully bank areas having the narrowest estimation
distribution ranges (ASD ¼ 12.7%). To accurately estimate sediment
source contributions and reduce uncertainty, the number of sedi-
ment sources needs to be minimized and sources with similar
properties classified into one group. For example, the forest and
grassland source areas of the current study could be combined into
a single group.

The mathematical concepts of the Bayesian model differ from
those of Walling-Collins model. The variation in the sediment
source contributions was much more stable in the Bayesian model.
As with the Walling-Collins model results, the distribution range of
the cultivated land samples was widest with ASD ¼ 11.4%, followed
by grassland, forest, and gully bank samples for which the ASD

Table 6
Mean absolute error (MAE) of the five artificial sediment groups.

Artificial mixture Walling-Collins model Bayesian model DFA model

MAE (%)

Group 1 3.9 9.4 21.4
Group 2 9.1 10.2 24.9
Group 3 7.1 6.9 10.2
Group 4 5.5 2.4 26.5
Group 5 1.7 0.4 11.1

Fig. 7. Frequency distributions with standard deviation (SD) of the mean proportional contributions estimated using the Walling-Collins model.
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Fig. 8. Posterior probability distributions with standard deviation (SD) of the mean proportional contributions estimated using the Bayesian model.

Table 7
Performance of the three models using individual sediment samples and grouped sediment samples.

Estimation model 25 individual sediment samples (%) Grouped sediment samples (%)

Average MAE Standard error of MAE Average MAE Standard error of MAE

Bayesian 7.4 0.6 5.9 1.9
Walling-Collins 7.5 0.7 5.4 1.3
DFA 18.4 1.4 18.5 3.4
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value was 7.7, 6.3, and 4.6%, respectively. Table 7 lists the perfor-
mance and rankings of the models when applied to individual
sediment samples and grouped sediment samples. For the indi-
vidual sediment samples, the range of variation in the Bayesian

model results is within the range of the Walling-Collins model re-
sults. In general, the Bayesian model performed best with an
average MAE for all samples being 7.4% with a standard error of
0.6%. The accuracy of the Walling-Collins model was similar to that
of the Bayesian model with an average MAE of 7.5% and standard
error of 0.7%, thus, indicating accurate results. The DFA model on
the other hand, is almost incapable of producing satisfactory results
for individual sediment samples, exhibiting an average MAE of
18.4% and a standard error of 1.4%. For the grouped sediment
samples, the Walling-Collins model was best with an average MAE
of 5.4% and a standard error of 1.3%. The Bayesian model was the
next most accurate with an average MAE of 5.9% and a standard
error of 1.9%. As with the individual sediment samples, the DFA
model was unable to correctly predict the source contributions of
the grouped sediment samples, having an average MAE of 18.5%
and a standard error of 3.4%.

The accuracies of the estimations of the relative sediment source
contributions, as provided by the Walling-Collins model and
Bayesian model are similar (p > 0.01) for both individual and
grouped sediment samples, and can be used interchangeably
(Table 8). The outputs of the grouped sediment samples were found
to be much higher than those for the individual sediment samples.
This indicates that the composite samples consist of several sub-
samples, which was done to enhance the representativeness of the
sampled area. This sample-collection strategy was proven to provide
an effective means of reducing random variability in the properties
(Wilkinson et al., 2013). For the Bayesian model, increasing the
number of samples providesmore a priori informationyieldingmore
accurate source contribution estimates. Therefore, increasing the

Table 8
The paired Student's t-test of MAE for the Walling-Collins, Bayesian, and DFA
models.

Pairs 25 individual
sediment samples

Grouped
sediment samples

t-value P-value t-value P-value

Pair 1 Walling-Collins & Bayesian 0.113 0.911 �0.276 0.796
Pair 2 Walling-Collins & DFA �8.041 0.000 �4.200 0.014
Pair 3 Bayesian & DFA �8.350 0.000 �3.851 0.018

Table 9
Tracer pairs subjected to discriminant function analysis and their abilities to
discriminate between the four sediment sources.

No. Tracer pairs Discrimination ability

1 P Br Ba 95%
2 P Br SiO2 80%
3 P Br Al2O3 80%
4 Br Ba SiO2 95%
5 Br Ba Al2O3 90%
6 Ba SiO2 Al2O3 95%
7 P Ba SiO2 100%
8 P Ba Al2O3 100%
9 P SiO2 Al2O3 85%
10 Br SiO2 Al2O3 80%

Fig. 9. Source contribution results of the analytical solution with tracer pairs in the individual sediment samples. AP is the actual percentage of each sediment in the mixed
sediment.
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number of samples will improve the estimation results. Compared to
the Walling-Collins and Bayesian models, the DFA model performed
poorly when applied to both the individual and grouped sediment
samples. The accuracy of DFA model and the other models was
significantly different (p < 0.01; Table 8). Variations in the tracer
concentration of a sourcewithin a group or between groups, and the
types and number of tracers, all affect the centroid position and in-
fluence DFA model uncertainty. The DFA model does not apply the
tracer concentrations directly, but builds functions that group sedi-
ment sources, and then infers the sediment contributions based on
the distance from the source centroid to the sample. The DFA model
reduces the uncertainty that arises from the different tracer con-
centration patterns (Liu et al., 2016). However, it can also lead to false
recognition, as using either individual or grouped sediment samples
produces similar results.

Zhang and Liu (2016) made full use of tracer information in the
form of multiple composite fingerprints and tracer pairs to derive
an analytical solution with tracers that had passed the H-test.
However, their method involves high amounts of calculation. In the
current study, the sediment contributionwas estimated with tracer
pairs that consisted of the final optimum composite fingerprints (P,
Br, Ba, SiO2, and Al2O3). Three tracers are needed to obtain
analytical solutions for the four sediment sources and 10 (Cm�1

n ¼
C3
5) possible tracer pairs were produced (Table 9). For individual

sediment samples, the mean concentration of each tracer in the
source samples was used to calculate the sediment contributions to
the 25 sediment sources. Negative solutions were eliminated, and
the final proportion was the average of solutions calculated from
tracer pairs as well as the five grouped sediment samples. Figs. 9
and 10 show the results obtained for the source contributions of

the individual and grouped sediment samples, respectively. The
performance obviously is better than that of the DFA model, with
accuracies of 9.0% and 4.1% for the individual and grouped sediment
samples, respectively. However, this approach depends to a great
extent on property analysis accuracy and the conservativeness of
the tracers. In the current study, the sediment samples were
created artificially and had not undergone the erosion process
including transport, movement, and sedimentation. The tracers
exhibited almost no chemical change or dissolution between the
source and the artificial sediment samples. Therefore, it is feasible
to use this method for tracers that are environmentally stable.

5. Conclusions

The current study investigated the potential of the Bayesian
model and DFA model for estimating sediment source contribution
through the validation of artificial mixtures with well-
distinguished sources. The performance of the two models also
were compared against the Walling-Collins model, one of the most
representative of the multivariate mixing models. The Bayesian
model provided an estimation with a high level accuracy similar to
that obtained with the Walling-Collins model. The DFA model,
however, failed to perform satisfactorily when applied to sediment
source estimation.

For individual sediment samples, the Bayesian model produced
an estimate of the source contributions that was closer to the actual
percentage than the other models. The Walling-Collins model was
the second-most accurate model, and only slightly less accurate
than the Bayesianmodel, whereas the difference between estimates
provided by the DFA model and the actual values was much greater.

Fig. 10. Source contribution results for the analytical solution with tracer pairs in five categories of grouped sediment samples.
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Regarding the prediction accuracy of the source contributions to
the grouped sediment samples, the Walling-Collins and Bayesian
models both performed well, and the DFA model results were less
reliable. Compared with the individual sediment samples, the ac-
curacy of the estimations of the sediment source relative contri-
butions for the grouped sediment samples, as determined by the
Walling-Collins and Bayesian models, were both much higher.
This further reveals that increasing the number of sediment sam-
ples greatly improved the representativeness of the tracer con-
centrations. However, results produced by the DFA model were
similar for the individual and grouped sediment samples, sug-
gesting that there is still potential to improve this model. An
analytical solution based on tracer pair proportions offers the po-
tential to estimate sediment source contributions, especially for
conservative tracers in a stable environment.
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